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@ML4Chem

MACHINE LEARNING FOR CHEMISTRY AND MATERIALS

MLA4Chem is a package to deploy machine learning for chemistry and materials science. It is written in Python 3, and
intends to offer modern and rich features to perform machine learning (ML) workflows for chemical physics.

A list of features and ML algorithms are shown below.

PyTorch backend.

Completely modular. You can use any part of this package in your project.

Free software <3. No secrets! Pull requests and additions are more than welcome!
Documentation (work in progress).

Explicit and idiomatic: m14chem.get_me_a_coffee ().

Distributed training in a data parallel paradigm aka mini-batches.

Scalability and distributed computations are powered by Dask.

Real-time tools to track status of your computations.

Easy scaling up/down.

Easy access to intermediate quantities: NeuralNetwork.get_activations (X, numpy=True) or
VAE.get_latent_space (X).

Messagepack serialization.
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https://raw.githubusercontent.com/muammar/ml4chem/master/docs/source/_static/ml4chem.png
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CHAPTER
ONE

NOTES

This package is under heavy development and might break at some points until it gets stabilized. It is in its infancy, so
if you find there is an error, you might want to report it so that it can be improved. We also welcome pull requests if
you find any part of ML4Chem should be improved. That would be very nice.
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CHAPTER
TWO

CITING

If you find this software useful, please use this bibtex to cite it:

@article{El_Khatib2020,

author = "Muammar El Khatib and Wibe de Jong",

title = "{ML4Chem: A Machine Learning Package for Chemistry and Materials Science}",
year = "2020",

month = "3",

url = "https://chemrxiv.org/articles/ML4Chem_A_Machine_Learning_Package_for_Chemistry_
—and_Materials_Science/11952516",

doi = "10.26434/chemrxiv.11952516.v1"

}
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CHAPTER
THREE

DOCUMENTATION

To get started, read the documentation at https://ml4chem.dev. It is arranged in a way that you can go through the
theory as well as some code snippets to understand how to use this software. Additionally, you can dive through the
module index to get more information about different classes and functions of ML4Chem. If you think the documen-
tation has to be improved do not hesistate to state so in the bug reports and help out if you feel like it.



https://ml4chem.dev
https://ml4chem.dev/genindex.html
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if os.path.isfile(filename) :
os.remove(filename)

Logger (filename=filenae. fornat (case))

test = Trajectory("100/0_test.traj")

calc = Potentials.load(
model="{}/0_training.ml4c" . format (case),

params="{}/0_training.parans".format (case),
preprocessor="{}/6_training.scaler".format(case),

predictions = [1
true = [1
error = 1

for index, atoms in enumerate(test):
try:
rt_ml = calc.get_potential_energy(atoms)
rt_ex = atoms.get_potential energy()
predictions.append(rt_ml)
‘true.append(rt_ex)

except KeyError:
error.append (index)

[10]: import pandas as pd

predictions_df = pd.DataFrame. from_dict({"predictions": predictions, "
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CHAPTER
FIVE

COPYRIGHT

License: BSD 3-clause “New” or “Revised” License.

ML4Chem: Machine Learning for Chemistry and Materials (ML4Chem) Copyright (c)
2019, The Regents of the University of California, through Lawrence Berkeley
National Laboratory (subject to receipt of any required approvals from the U.S.
Dept. of Energy). All rights reserved.

If you have questions about your rights to use or distribute this software,
please contact Berkeley Lab's Intellectual Property Office at
IPO@1bl.gov.

NOTICE. This Software was developed under funding from the U.S. Department
of Energy and the U.S. Government consequently retains certain rights. As
such, the U.S. Government has been granted for itself and others acting on
its behalf a paid-up, nonexclusive, irrevocable, worldwide license in the
Software to reproduce, distribute copies to the public, prepare derivative
works, and perform publicly and display publicly, and to permit other to do
so.

5.1 Install ML4Chem

You can install ML4Chem from pip, conda or sources.

5.1.1 Pip

You can install ML4Chem and all its dependencies with pip:

’python3 -m pip install "ml4chem"

If you want to install the application for your user:

’pyhonB -m pip install ——user ml4chem

If you want to install the development version of the master branch:

’python3 -m pip install —--upgrade git+https://github.com/muammar/ml4chem.git

11
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5.1.2 Conda

For conda installation, execute:

conda install ml4chem

5.1.3 Sources

This type of installation is useful if you are going to develop new features for ML4chem.

1. Clone the application:

git clone https://github.com/muammar/ml4chem

2. Install the requirements:

cd ml4chem
python3 -m pip install -r requirements.txt

3. After requirements are installed, you can proceed to add m14chem to your PYTHONPATH and PATH (to use
the m14chem command line tool). Add the following to your .bashrc or .zshrc:

PYTHOPATH=/path/to/ml4chem: SPYTHONPATH
PATH=/path/to/ml4chem/bin:$PATH

5.2 License

MLA4Chem: Machine Learning for Chemistry and Materials (ML4Chem) Copyright (c) 2019, The Regents of the
University of California, through Lawrence Berkeley National Laboratory (subject to receipt of any required approvals
from the U.S. Dept. of Energy). All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the
following conditions are met:

(1) Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

(2) Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided with the distribution.

(3) Neither the name of the University of California, Lawrence Berkeley National Laboratory, U.S. Dept. of Energy
nor the names of its contributors may be used to endorse or promote products derived from this software without
specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, IN-
CIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSI-
NESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CON-
TRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAM-
AGE.
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You are under no obligation whatsoever to provide any bug fixes, patches, or upgrades to the features, functionality
or performance of the source code (“Enhancements”) to anyone; however, if you choose to make your Enhancements
available either publicly, or directly to Lawrence Berkeley National Laboratory, without imposing a separate written
license agreement for such Enhancements, then you hereby grant the following license: a non-exclusive, royalty-free
perpetual license to install, use, modify, prepare derivative works, incorporate into other computer software, distribute,
and sublicense such enhancements or derivative works thereof, in binary and source code form.

5.3 Building Documentation

Documentation is a very important part of any project, and in ML4Chem special attention is given to provide a clear
documentation.

To locally build the docs you need to execute the makedocs.sh script:

sh makedocs.sh

This will automatically perform the following commands for you:

cd source

sphinx—-apidoc -fo . ../../
cd

make html

When the Makefile is finished, you can check the documentation in the build/html folder.

5.4 Introduction

Data is central in Machine Learning and ML4Chem provides some tools to prepare your Datas. We support the
following input formats:

1. Atomic Simulation Environment (ASE).

We will be adding support to other libraries, soon.

5.5 Data

The ml4chem.data.handler module allows users to adapt data to the right format to inter-operate with any other
module of M14Chem.

Its usage is very simple:

from ml4chem.data.handler import Data
from ase.io import Trajectory

images = Trajectory("images.traij")
data_handler = Data(images, purpose="training™)
traing_set, targets = data_handler.get_data(purpose="training")

In the example above, an ASE trajectory file is loaded into memory and passed as an argument to instantiate the
Data class with purpose="training". The .get_images () class method returns a hashed dictionary with
the molecules in images.traj and the targets variable as a list of energies.

For more information please refer toml14chem.data.handler.

5.3. Building Documentation 13
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5.6 Introduction

The atomistic module is designed to deploy machine learning (ML) models where the atom is the central object. ML
potentials and force fields might be the best known cases of atom-centered models. These models are accurate for
tasks such as the prediction of energy and atomic forces. They also are powerful because they can generalize to larger
molecular as long as the local environments are sampled extensively to cover large domains.

5.7 Theory

The basic idea behind atomistic machine learning is to exploit the phenomenon of “locality” and predict molecular or
periodic properties as the sum of local contributions:

P = i Patom (Rlocal)

i=1

where P, s a functional of atomic positions. In the case the properties are atomic by nature, e.g. atomic forces or
atomic charges, there is no need to carry out the sum shown above as the output of the models are atomic.

5.8 Atomic Features

ML models require a set of measurable characteristics, properties or information related to the phenomenon that we
want to learn. These are known as “features”, and they play a very important role in any ML model. Features need to be
relevant, unique, independent, and for our purposes be physics-constrained e.g. rotational and translational invariance.

MLA4Chem supports by default Gaussian symmetry functions, and atomic latent features.

5.8.1 Gaussian Symmetry Functions

In 2007, Behler and Parrinello [Behler2007] introduced a fixed-length feature vector, referred also as “symmetry
functions” (SF), to generalize the representation of high-dimensional potential energy surfaces with artificial neural
networks and overcome the limitations related to the image-centered models. These SF are atomic feature vectors
constructed purely from atomic positions, and their main objective is to define the relevant chemical environment of
atoms in a material.

For building these features, we need to define a cutoff function (f.) to delimit the effective range of interactions within
the domain of a central atom.

0.5(1 4 cos(w%-)), ifr <R,
Jilr) = { (et ).
0, ifr > R,

where IR, is the cutoff radius (in unit length), and r is the inter-atomic distance between atoms ¢ and j. The cutoff
function, having Cosine shape, vanishes for inter-atomic separations larger than R, whereas it takes a finite value
below the cutoff radius. Cutoff functions avoid abrupt changes on feature magnitudes near the boundary by smoothly
damping them.

There are different types of SFs to consider when building Behler-Parrinello feature vectors: i) the radial (two-body
term) and ii) angular (three-body terms) SFs. The radial SFs account for all interactions of a central atom ¢ with its
nearest neighbors atoms j. It is defined by,

Natom
. 2 2
G2 = Z e MRy —R)*/Rof (R,

Jj=1
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where Rj;j is the euclidean distance between central ¢ and neighbor j atoms, R, defines the center of the Gaussian,
and 7 is related to its width. Each value in the sum is normalized by the square of the cutoff radius, R2. In practice,
one builds a high-dimensional feature vector by choosing different 7 values.

In addition to the radial SF, it is possible to include triplet many-body interactions within the cutoff radius R, through
the following angular SFs:

GF =2'7C Y (14 Acostyjp) e "R TRASIRIAVEC 1 (R ) fo(Ri) fo Ryn)-
.k
This part of the features is built from considering the Cosine between all possible 6;;; angle of a central atom. There

exists a variant of G$ that includes three-body interactions of atoms forming 180° inside the cutoff sphere but having
an interatomic separation larger than Rc. These SFs account for long-range interactions [Behler2015]:

Gt =21"¢ Z 1+ )\cosﬂijk)Cefn(R‘juR“‘Q)/Rifc(Rij)fc(Rik)-
jk#i
An atomic Behler-Parrinello feature vector will be composed by a subvector with radial SFs and another subvector

of angular SFs. This represents an advantage when it comes to evaluate which type of SFs is more important when
predicting energy and atomic forces.

from ml4chem.atomistic.features.gaussian import Gaussian

features = Gaussian(cutoff=6.5, normalized=True, save_preprocessor="features.scaler")

In the code snippet above we are building Gaussian type features using the ml14chem.atomistic. features.
gaussian.Gaussian class. We use a cutoff radius of 6.5 angstrom, we normalized by the squared cut-
off raidous, and the preprocessing is saved to the file features.scaler (by default the preprocessing used is
MinMaxScaler in arange (—1,1) as implemented in scikit-learn). The angular symmetry functions used
by default are G2, if you are interested in using G, then you need to pass angular_type keyword argument:

features = Gaussian(cutoff=6.5, normalized=True,
save_preprocessor="features.scaler", angular_type="G4")

5.8.2 Atomic Enviroment Vector

The Gaussian feature vectors were modified by Smith et al [Smith2017] in the following way:

The radial symmetry functions are not normalized by the squared of the cutoff radius, and instead of several eta values
they use a single value to produce thin Gaussian peaks, and different R_s parameters are used to probe outward from
the atomic center.

Natom

es — 2
G = ) e "RuTIf(Ry),
i#i

The angular part adds an arbitrary number of shifts in the angular environment and an exponential factor that allows the
angular environment to be considered within radial shells based on the average of the distance from the neighboring
atoms.

G =217 3 (1 + cos(Bin — 0,) e MRt Ra/=RI £ (R, ) fo(R).
j,k#i
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5.8.3 Atomic Latent Features

Atomic latent features are those extracted using unsupervised learning.

5.9 Models

5.9.1 Neural Networks

Neural Network (NN) are models inspired on how the human brain works. They consist of a set of hidden-layers
with some nodes (neurons). The most simple NN architecture is the fully-connected case in which each neuron is
inter-connected to every other neuron in the previous/next layer, and each connection has its own weight. When an
activation function is applied to the output of a neuron, the NN is able to learn non-linearity aspects from the data.

In ML4Chem, a neural network can be instantiated as shown below:

from ml4chem.atomistic.models.neuralnetwork import NeuralNetwork

n = 10

activation = "relu"

nn = NeuralNetwork (hiddenlayers=(n, n), activation=activation)
nn.prepare_model ()

Here, we are building a NN with the ml14chem.atomistic.models.neuralnetwork.NeuralNetwork
class with two hidden-layers composed 10 neurons each, and a ReLu activation function.

5.9.2 Autoencoders

Autoencoders (AE) are NN architectures that able to extract features from data in an unsupervised learning manner.
AE learns how to encode information because of a hidden-layer that serves as an informational bottleneck as shown
in the figure below. In addition, this latent code is used by the decoder to reconstruct the input data.

16 Chapter 5. Copyright
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Encoder ~  r-mmmmemmmmmmmmeeeeeeeeoooe- ,

from ml4chem.atomistic.models.autoencoders import AutoEncoder

hiddenlayers = {"encoder": (20, 10, 4), "decoder": (4, 10, 20)}

activation = "tanh"

autoencoder = AutoEncoder (hiddenlayers=hiddenlayers, activation=activation)
data_handler.get_unique_element_symbols (images, purpose=purpose)
autoencoder.prepare_model (input_dimension, output_dimension, data=data_handler)

ML4Chem also provides access to variational autoencoders (VAE) [Kingma2013]. These architectures differ from
an AE in that the encoder codes a distribution with mean and variance (two vectors with the desired latent space
dimension) instead of a single latent vector. Subsequently, this distribution is sampled and used by the decoder to
reconstruct the input. This creates a generative model because now we will generate a latent distribution that allows a
continuous change from one class to another.

5.9. Models 17




ML4Chem Documentation

BGAERR 3009090909090 e e e e -

Latent
Distribution

Sampling

------------------------------------------------------ Decoder

To use this architecture, it just suffices to change the snippet shown above for an AE as follows:

from ml4chem.atomistic.models.autoencoders import VAE

hiddenlayers = {"encoder": (20, 10, 4), "decoder": (4, 10, 20)}

activation = "tanh"

vae = VAE (hiddenlayers=hiddenlayers, activation=activation, variant="multivariate")
data_handler.get_unique_element_symbols (images, purpose=purpose)

vae.prepare_model (input_dimension, output_dimension, data=data_handler)

5.9.3 Kernel Ridge Regression

Kernel Ridge Regression (KRR) is a type of support vector machine model that combines Ridge Regression with the
kernel trick. In ML4Chem, this method is implemeted as described by Rupp in Ref. [Rupp2015]. Below there is a
description of this implementation:

1. Molecules are featurized.

2. A kernel function k(x,y) is applied to all possible pairs of atoms in the training data to build a covariance
matrix, K.

3. K is decomposed in upper- and lower- triangular matrices using Cholesky decomposition.

4. Finally, forward- and backward substitution is carried out with desired targets.

18 Chapter 5. Copyright
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5.9.4 Gaussian Process Regression

Gaussian Process Regression (GP) is similar to KRR with the addition of the uncertainty of each prediction.

References:

5.10 Introduction

MLA4Chem uses Dask which is a flexible library for parallel computing in Python. Dask allows easy scaling up and
down without too much effort.

In this part of the documentation, we will cover how ML4Chem can be run on a laptop or workstation and how we can
scale up to running on HPC clusters. Dask has a modern and interesting structure:

1. A scheduler is in charge of registering tasks.

2. Tasks can be registered in a delayed way (registered but not computed) or simply submitted as futures (submitted
and computed).

3. When the scheduler receives a task, it sends it to workers that carry out the computations and keep them in
memory.

4. Results from computations can be subsequently used for more calculations or just brought back to memory.

5.11 Scale Down

Running computations with ML4Chem on a personal workstation or laptop is very easy thanks to Dask. The
LocalCluster class uses local resources to carry out computations. This is useful when prototyping and build-
ing your pipeline withouth wasting time waiting for HPC resources in a crowded cluster facility.

ML4Chem can run with LocalCluster objects, for which the scripts have to contain the following:

from dask.distributed import Client, LocalCluster

cluster = LocalCluster (n_workers=8, threads_per_worker=2)
client = Client (cluster)

In the snippet above, we imported Client that will connect to the scheduler created by the LocalCluster
class. The scheduler will have 8 workers with 2 threads. As tasks are required, they are sent by the Client to
the LocalCluster for being computed and kept in memory.

A typical script for running training in ML4Chem looks as follows:

from ase.io import Trajectory

from dask.distributed import Client, LocalCluster

from ml4chem.atomistic import Potentials

from ml4chem.atomistic.features import Gaussian

from ml4chem.atomistic.models.neuralnetwork import NeuralNetwork
from ml4chem.utils import logger

def train():
# Load the images with ASE
images = Trajectory("cu_ training.traj")

(continues on next page)
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(continued from previous page)

# Arguments for fingerprinting the images
normalized = True

# Arguments for building the model
n = 10
activation = "relu"

# Arguments for training the potential
convergence = {"energy": 5e-3}

epochs = 100

lr = 1.0e-2
weight_decay = 0.
regularization =

calc = Potentials(
features=Gaussian (
cutoff=6.5, normalized=normalized, save_preprocessor="model.scaler"
)I
model=NeuralNetwork (hiddenlayers=(n, n), activation=activation),
label="cu_training",

optimizer = ("adam", {"1lr": lr, "weight_decay": weight_decay})
calc.train(

training_set=images,

epochs=epochs,

regularization=regularization,

convergence=convergence,

optimizer=optimizer,

if name == "__main__":

logger (filename="cu_training.log")
cluster = LocalCluster()

client = Client (cluster)

train()

5.12 Scale Up

Once you have finished with prototyping and feel ready to scale up, the snippet above can be trivially expanded
to work with high performance computing (HPC) systems. Dask offers a module called dask_jobgqueue that
enables sending computations to HPC systems with Batch systems such as SLURM, LSF, PBS and others (for more
information see https://jobqueue.dask.org/en/latest/index.html.

To scale up in ML4Chem with Dask, you only have to slightly change the snipped above as follows:

if name == "_ _main__ ":

from dask_jobqueue import SLURMCluster
logger (filename="cu_training.log")

cluster = SLURMCluster (
cores=24,

(continues on next page)
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(continued from previous page)

processes=24,
memory="100GB",
walltime="24:00:00",
queue="diracl",
)
print (cluster)
print (cluster. job_script())
cluster.scale (jobs=4)
client = Client (cluster)
train()

We removed the LocalCluster and instead used the SLURMCluster class to submit our computations to a
SLURM batch system. As it can be seen, the cluster is now a SLURMCluster requesting a job with 24 cores and
24 processes, 100GB of RAM, a wall time of 1 day, and the queue in this case is diracl. Then, we scaled this up by
requesting to the HPC cluster 4 jobs with these requirements for a total of 96 processes. This cluster is passed to
the client and the training is effectively scaled up.

5.13 Visualization

We also offeraml4chem.visualization module to plot interesting graphics about your model, features, or even
monitor the progress of the loss function and error minimization.

Two backends are supported to plot in ML4Chem: Seaborn and Plotly.

An example is shown below:

from ml4chem.visualization import plot_atomic_features
fig = plot_atomic_features("latent space.db",
method="pca",
dimensions=3,
backend="plot1ly")
fig.write_html("latent example.html")

This will produce an interactive plot with plotly where dimensionality was reduced using PCA, and an html with the
name latent_example.html is created.

To activate plotly in Jupyter or JupyterLab follow the instructions shown in https://plot.ly/python/getting-started/
#jupyter-notebook-support

If plotly is not rendering correctly you need to install the jupyter extension:

jupyter labextension install @jupyterlab/plotly—-extension

5.14 Indices and tables

* genindex
* modindex

e search

5.13. Visualization 21
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